

2501 Richmond Sanitary Servicing Study

Background

Pasquini & Associates, a licensed third-party engineer, submitted a Sanitary Servicing Study (study) for the 2501 Richmond project in November 2023. The initial study evaluated up to 2,505 residential units on the site and indicated the development could be accommodated with several phased upgrades of existing sanitary lines. In July 2024, following careful consideration of community and City feedback, a revised land use application was submitted with a reduced unit count. The City of Calgary Utility Engineering requested a revised study which was submitted in September 2024 evaluating the July 2024 reduced unit count of 1,525 units. Utility Engineering requested further scenario analysis and the final study was submitted in November 2024 evaluating the impact of up to 1,525 units. The approved study is enclosed and summarized below.

Study Findings

The study sought to identify any pipes which would exceed 86% of their capacity upon potential buildout of 1,525 units. In all scenarios, the proposed development can be constructed without reaching full capacity of the pipes.

Scenario 1 evaluated existing conditions without any new development. Scenario 2 evaluated the proposed development and assumes the sanitary flows are split between 25 Street and 24A Street SW equally. It was determined that over 1,600 units could be accommodated without any pipe segments exceeding the 86% capacity.

Scenarios 3 and 4 evaluated a more probable buildout that would direct approximately two thirds of sanitary flows to 24A Street SW and one third to 25 Street SW. Under this distribution, it was deemed that one pipe segment (83m in length under 24A Street SW) would exceed 86% of its capacity but remain below full capacity. The study identified this pipe segment for a potential increase in size even though it did not exceed the capacity of the pipe.

Approval and Next Steps

In December 2024, the City of Calgary Utility Engineering team confirmed acceptance and approval of the enclosed Sanitary Servicing Study. It was further noted that while the study considers an upgrade of one pipe segment, at this time that upgrade is not warranted based on the City's evaluation of the broader sanitary system. This is because the noted pipe segment is not surcharged (meaning over 100% capacity) when the proposed maximum density of 1,525 units is reached. Such findings are common and limit unnecessary construction and disruption in established communities.

2501 Richmond Sanitary Servicing Study

Application Number: LOC2023-0359

Prepared For:

The City of Calgary
Development Approvals
Infrastructure Planning, Water Resources
4th Floor, Manchester Water Center
625 – 25th Avenue SE
Calgary, Alberta T2G 4K8

On Behalf Of:

Minto Communities

Prepared By:

#300, 929 – 11th Street SE Calgary, AB T2G 0R4

File: 625 900

October 31, 2024

Table of Contents	Page
1.0 Introduction	3
2.0 Site Location and Description	3
3.0 Proposed Sanitary Sewer System	3
3.1 Sanitary Sewer Design Parameters	4
3.1.1 Design Population	4
3.1.2 Average Dry Weather Flow	4
3.1.3 Peaking Factors	4
3.1.4 Infiltration / Inflow	5
3.1.5 Peak Wet Weather Flow	5
3.1.6 Manning's N Value	5
4.0 Sanitary Sewer System Analysis	5
4.0.1 Scenario 1 - Existing Development Conditions	5
4.0.2 Scenario 2 – Max Development of the Subject Site Utilizing Exis	sting Pipe Capacity5
4.0.3 Scenario 3 - Development of the Subject Site to Maximum Den	sity6
4.0.4 Scenario 4 – Pipe Upgrades for Subject Site Maximum Density.	6
5.0 Conclusions and Recommendations	6
6.0 Corporate Authorization	7
7.0 References	8
List of Figures	Page
Figure 1 – Location Plan	following Page 3
Figure 2 – Proposed Land Use Plan	following Page 3
Figure 3 – Concept Plan	following Page 3

APPENDIX A: Sanitary Servicing Study Guidelines

APPENDIX B: Sanitary Sewer System Analysis Scenarios

1.0 Introduction

B&A Studios, on behalf of Minto Communities has submitted the "2501 Richmond Land Use Redesignation" application (LOC2023-0359) to the City of Calgary for a parcel of land in southwest Calgary within the existing community of Richmond. As part of the Pre-Application Assessment (PE2023-00835) for this site, comments received from the Development Applications Review Team (DART), Utility Engineering on behalf of City - Water Resources requested that a sanitary servicing study be completed to determine the adequacy of the proposed sanitary sewer systems to satisfy the demands of the proposed development. Accordingly, Pasquini & Associates (PA) has prepared this sanitary servicing study in support of the proposed development. This Sanitary Servicing Study studies the maximum unit count noted in the Outline Plan and Land Use Redesignation submitted July 2024, up to 1,525 units.

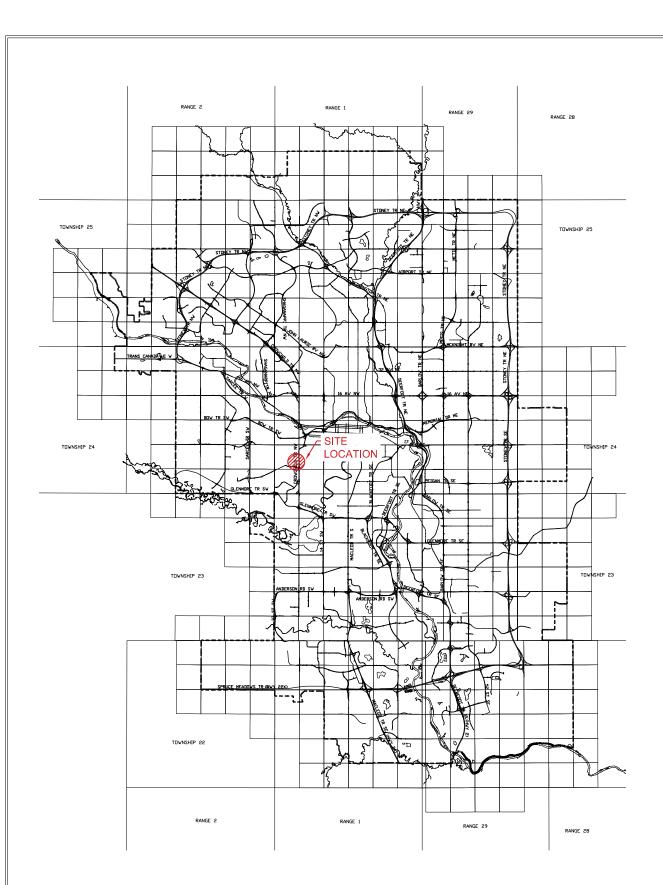
2.0 Site Location and Description

The parcels making up the subject site are located in southwest Calgary and comprise an area of approximately 4.65 ha within the E½ Section 07-24-01-05. The parcel is situated east of 25th Street SW, west of Crowchild Trail SW, south of Richmond Road SW and north of 30th Ave SW. The parcel encompasses the former Viscount Bennett High School site. The legal description, municipal address, and the proposed land use are shown on the Outline Plan and Land Use Redesignation (See Figure 1 & 2). See Figure 3 for the proposed phasing plan.

3.0 Proposed Sanitary Sewer System

This sanitary servicing study is based on the methodology outlined in the "Sanitary Servicing Study Guidelines" provided by City of Calgary - Water Resources (Appendix A). The study provides an analysis of the existing sanitary sewer pipe system capacity under existing conditions and proposed development conditions. The analysis was undertaken for pipe sizes up to and including the nearest 375 mm sanitary sewer pipe.

The existing sanitary sewer pipe system including pipe sizes and manhole locations are shown on figures contained in subsequent sections of this report. Existing and proposed development sanitary catchment areas are also shown on the scenario figures included in Appendix B. In general, sanitary flows from the subject site are tributary to existing 200 mm CIP sanitary sewer pipe which run north along 24A ST SW and 25th ST SW. The sanitary sewer pipes within both roads transition into a 250 mm CIP/VCT pipe north of 26th Ave SW before connecting to a 525 mm CON sanitary sewer pipe in 25th Ave SW and flowing east. This study determines the max units that can be serviced by each connection and subsequently establishes unit thresholds to which existing infrastructure upgrades may be required.



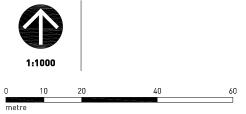


Figure 3

2501 RICHMOND

Phasing Plan
Minto Communities
Block A, Plan 5118 FQ & Block B, Plan 8598 GF
2519 Richmond Road S.W.

June 2024

3.1 Sanitary Sewer Design Parameters

The subject site is the only proposed new development tributary to the existing sanitary sewer pipe system being analyzed. Existing and proposed development sanitary catchment areas tributary to the existing sanitary sewer pipe system were delineated and are shown on figures in Appendix D. Sanitary sewer design parameters for the proposed development were determined from the statistics noted on the land use plan (Figure 2) and based on proposed phasing shown on the phasing plan (Figure 3). Sanitary sewer design parameters for existing and proposed development were determined from information provided by City of Calgary – Water Resources. Sanitary sewer design parameters are overviewed in the following sections.

3.1.1 Design Population

The design populations for existing and proposed development sanitary catchment areas are based on design guidelines and statistical data provided previously by City of Calgary – Water Resources. For the existing and proposed residential development in the Richmond community, the following population density was assumed.

- Proposed Multi-Unit Apartment = 1.7 ppu (assumed high density)
- Existing residential development density = 55 ppl/ha

Land uses, areas, and design populations of proposed development sanitary catchment areas are shown on the Outline Plan in (see Figure 2).

3.1.2 Average Dry Weather Flow

The average dry weather flow (ADWF) was based on:

- 380 litres per capita per day for existing residential development
- 315 litres per capita per day for proposed residential development

3.1.3 Peaking Factors

The peaking factor is the ratio of peak dry weather flow to the average dry weather flow. Peak flows were calculated using the following formula as per Alberta Environment Guidelines.

$$Q_{PDW} = \frac{G * P * P_f}{86.4}$$

Where: Q_{PDW} = the peak dry weather flow (L/s)

G = the per capita average daily design flow (L/d)

P = the design contributing population in thousands

 P_f = Harmon's Peaking Factor = 1 + 14 / (4 + $P^{0.5}$) but not less than 2.5

3.1.4 Infiltration / Inflow

Design flows include an allowance of 0.28 litres/sec/ha to account for groundwater infiltration and system inflows (I&I) into manholes and pipes as per Alberta Environment's Wastewater Systems Guidelines.

3.1.5 Peak Wet Weather Flow

Peak wet weather flow was calculated using the following formula.

Peak Wet Weather Flow (PWWF) = ADWF $x P_f + I\&I$

<u>Note</u> – sanitary sewers are to be designed such that the PWWF does not exceed 86% of the pipe capacity.

3.1.6 Manning's N Value

As per City of Calgary guidelines, all proposed sanitary sewers are designed using a manning's "n" value of 0.013 for CIP pipe.

4.0 Sanitary Sewer System Analysis

Excel spreadsheets were created for sanitary flow calculations and analysis of the existing sanitary sewer pipe system. Sanitary flows were calculated for the existing and proposed development sanitary catchment areas based on the sanitary sewer design parameters described in Section 3.1.1 to 3.1.5. Analysis of the existing sanitary sewer pipe system first involved establishing the base case which is a comparison of sanitary flows under existing conditions with available pipe capacity. Subsequently, sanitary flows were calculated to determine maximum unit development that is possible within the 2501 Richmond site utilizing the excess capacity within the existing sanitary sewer pipes and lastly to include the ultimate proposed 2501 Richmond densities compared with available pipe capacity. For the analysis, pipe capacity was deemed insufficient when sanitary flows exceeded 86% of pipe capacity. Development scenario figures and spreadsheets are contained in Appendix B.

4.0.1 <u>Scenario 1</u> - Existing Development Conditions

Under this scenario (Scenario 1 spreadsheet and figure in Appendix B), sanitary flows were calculated for existing development conditions and compared with the available pipe capacity of the existing sanitary sewer pipe system. This scenario establishes the base case for comparison with the development scenario. For this scenario, it was determined that under existing development conditions, sanitary sewer flows are within acceptable pipe capacity limits for all downstream pipe segments.

4.0.2 <u>Scenario 2</u> – Max Development of the Subject Site Utilizing Existing Pipe Capacity

Under this scenario (Scenario 2 spreadsheet in Appendix B), the maximum number of units that can be developed within acceptable pipe capacity limits for connections in both 24A St SW and 25 St SW was determined. Sanitary flows from the north portion of the site (Catchment A) were

assumed tributary to MH-13 of the sanitary pipe in 24A ST SW. Sanitary flows from the south portion (Catchment B) was assumed tributary to MH- 27 of the sanitary pipe along 25th ST SW. For this development scenario, unit counts were determined such that the sanitary sewer pipe capacity was not exceeded within any of the existing pipe segments downstream.

4.0.3 Scenario 3 – Development of the Subject Site to Maximum Density

Under this scenario (Scenario 3 spreadsheet and figure in Appendix B), it is assumed that the subject site (Catchments A and B) is fully developed to maximum density of 1,525 units. Sanitary flows for a portion of Catchment B (ie. that portion being Site 1 and a portion of Site 2) were assumed to be tributary to MH-27 of the sanitary pipe in 25th ST SW, while the remainder of the development (ie. the remainder of Site 2, Site 3 and Site 4) were assumed tributary to MH-13 of the sanitary pipe in 24A ST SW. For this post development scenario, it was determined that the sanitary sewer pipe capacity was exceeded in one (1) existing pipe segment downstream in 24A ST SW.

4.0.4 Scenario 4 - Pipe Upgrades for Subject Site Maximum Density

Under this scenario (Scenario 4 spreadsheet and figure in Appendix B), it is assumed that the subject site (Catchments A and B) is fully developed to maximum density of 1,525 units. Sanitary flows for a portion of Catchment B (ie. that portion being Site 1 and a portion of Site 2) were assumed to be tributary to MH-27 of the sanitary pipe in 25th ST SW, while the remainder of the development (ie. the remainder of Site 2, Site 3 and Site 4) were assumed tributary to MH-13 of the sanitary pipe in 24A ST SW. For this post development scenario, it was determined that one (1) existing sanitary sewer pipe segment needed to be upsized to 250mm to provide adequate capacity.

5.0 Conclusions and Recommendations

The following conclusions and recommendations can be surmised from the sanitary sewer system analysis undertaken.

- Sanitary flows were calculated for the existing and proposed development sanitary catchment areas based on the sanitary sewer design parameters described in Section 3.1.1 to 3.1.5. The calculated sanitary flows were utilized in the analysis of the sanitary sewer system for existing conditions and the proposed development scenario.
- Sanitary sewer pipe capacity is maximized (< 86%) with a unit development from the subject site totalling 870 units and 820 units respectively in Catchments A and B (Scenario 2 spreadsheet in Appendix B). Therefore, development of the site should be permitted to density thresholds of up to 820 units draining to 25th ST SW and up to 870 units draining to 24A St SW before existing sanitary sewer pipe upgrades need to be constructed.
- Sanitary sewer pipe capacity is exceeded (> 86%) in one (1) pipe segment of the existing sanitary sewer pipe system following development to maximum proposed density of the subject site (Scenario 3 spreadsheet and figure in Appendix B). The affected segments comprise approximately 83 m of 200 mm CIP pipe.

- Pipe upgrades required for maximum development density of the subject site are shown
 on the Scenario 4 Upgraded Pipes spreadsheet and figure contained in Appendix B.
 Upgrades were based on determining the pipe size required to ensure sanitary flows do
 not exceed 86% of pipe capacity. It was determined that in order to satisfy this criterion,
 one (1) downstream pipe segment totalling some 83 m would have to be upgraded by
 increasing the pipe one size to 250 mm. These upgrades are based on achieving gravity
 (free-flow) conditions along all pipe segments.
- Sanitary sewer capacity analysis has been completed based on a maximum unit build out
 of 1,525 units from the proposed land use. As development occurs, analysis of actual
 density vs. maximum density should be examined to confirm whether offsite upgrades are
 necessary. The only potential upgrade that may be required has been identified above in
 24A St SW; upgrade of this sanitary main will only be required if or when in excess of 870
 new units are proposed to be connected to this main.

6.0 Corporate Authorization

This report entitled "2501 Richmond (Application Number: LOC2023-0359) Sanitary Servicing Study" was prepared by Pasquini & Associates on behalf of Minto Communities for The City of Calgary – Water Resources in accordance with the requirements of The City of Calgary.

Preparation of this report has been undertaken by a responsible professional member and is intended for use by the aforementioned parties exclusively.

PREPARED BY:

CORPORATE AUTHORIZATION

RESPONSIBLE ENGINEER

7.0 References

Wastewater Systems Guidelines for Design, Operating and Monitoring Alberta Environment, March 2013

Sanitary Servicing Study Guidelines City of Calgary

Design Guidelines for Subdivision Servicing 2014 City of Calgary, August 2015

Appendix A

Sanitary Servicing Study Guidelines

Sanitary Servicing Study Guidelines

1.0 Objectives and Rationale

The objective of a Sanitary Servicing Study (SSS) is to demonstrate the adequacy of the existing and proposed sanitary sewer systems to satisfy the demands of a proposed development or redevelopment.

1.1 System Analysis Requirements

For residential and ICI redevelopments that will increase the density of a parcel or development area to more than 55 persons per hectare (ppha) and will be discharging a minimum of 1 litre per second, Water Resources may require an SSS using the method outlined below to ensure that there is sufficient system capacity. Water Resources requires both the average dry weather flow and the peak wet weather flow. This report will typically be requested during the Development Permit or Outline Plan process with approval required prior to release of the Development Permit or approval of the Outline Plan.

The study must include both the existing and redevelopment design flow calculations unless the proposed development is within the Centre City Plan Area boundary. To calculate the existing flow the entire catchment area should be assumed to have a density of 55 ppha. A figure illustrating the Centre City Plan Area can be found in Attachment 1.

The analysis of the existing sanitary system must be completed up to the nearest 375mm sanitary sewer pipe. Water Resources will evaluate the infrastructure downstream of this point for any further impacts.

In the West Memorial Sanitary Trunk Catchment impacted area (Attachment 2), when a use is replaced by a new use, and it can be demonstrated to the satisfaction of Water Resources that the new development will not contribute additional net flow to the sanitary system, the application for the replacement use can be approved. In order for Water Resources to evaluate the impact of sanitary flow from a development site, a sanitary study must be submitted. This study needs to identify the average dry weather flow and peak wet weather flow discharge from the proposed development and existing development. This information may be required in this catchment even if the density is not above 55 ppha or the discharge is less than 1 litre/sec. Analysis of the downstream system beyond the connection to the public sanitary main is not required in this catchment.

If a proponent can demonstrate that the proposed development generates sanitary flows that do not adversely impact the West Memorial Sanitary Trunk, that application can be approved. In order for Water Resources to evaluate the impact of sanitary flow from a development site, a sanitary study must be submitted.

In the particular circumstance where one single-detached dwelling is replaced with two single-detached dwellings, a duplex or a semi-detached dwelling (two units), it has been determined that the development does not materially change the risks of basement flooding in the catchment and this type of development may be allowed. A sanitary servicing study is not required for this development.

1.2 Design Parameters

The following parameters shall be used in the design or evaluation of the sanitary sewer system for most developments. The values recommended in this guideline may not be applied to high water consumption land uses such as hospitals, heavy industry, meat packing plants, breweries, etc. Detailed analysis of the design requirements specific to each development proposal is required in such cases.

1.2.1 Design Population

The design population should be based on 55 ppha for residential, industrial, commercial and institutional developments unless actual or planned densities are greater. Established industrial developments may use actual employment data if available.

1.2.2 Average Dry Weather Flow

The average dry weather flow (ADWF) shall be based on the requirements below dependant on the development type.

1.2.2.1 Residential

For design purposes, the year round average per capita daily dry weather sewage flow for residential developments in the City of Calgary is 380 litres.

1.2.2.2 Commercial / Institutional

For most commercial or institutional developments the sewage flow shall be estimated using a per capita daily flow rate of 230 litres.

Commercial and institutional developments that generate above normal flows will be required to provide additional details and estimate the discharge rates in accordance to the proposed development.

1.2.2.3 Industrial

Average daily sewage flows for most established industrial developments shall be based on 230 litres per employee.

Average daily sewage flows for most new industrial developments shall be based on 230 lpcd with a density of 55 ppha.

Industrial developments that generate above normal flows will be required to provide additional details to more accurately predict proposed discharge rates.

1.2.3 Peaking Factors

The peaking factor is the ratio of peak dry weather flow to the average dry weather flow. Peak sanitary sewage flow calculations must be provided in addition to average daily flows for residential, industrial, commercial and institutional developments. Peak flows shall be calculated as follows:

$$Q_{pdw} = (G \times P \times P_f) / 86.4$$

Where: Qpdw = the peak dry weather flow (litre/sec)

G = the per capita average daily design flow (litres/day/person)

P = the design contributing population in thousands

 P_f = Harmon's Peaking Factor = 1 + 14/(4 + $P^{0.5}$) but not less than 2.5

1.2.4 Infiltration / Inflow

Design flows shall include an allowance of 0.28 litre/sec/ha to account for groundwater infiltration and system inflows (I&I).

1.2.5 Peak Wet Weather Flow

Peak Wet Weather Flow (PWWF) = ADWF $\times P_f + 1&I$

1.2.6 Sanitary Sewer Design Flow

Sanitary sewers shall be designed such that the PWWF does not exceed 86% of the sewer capacity.

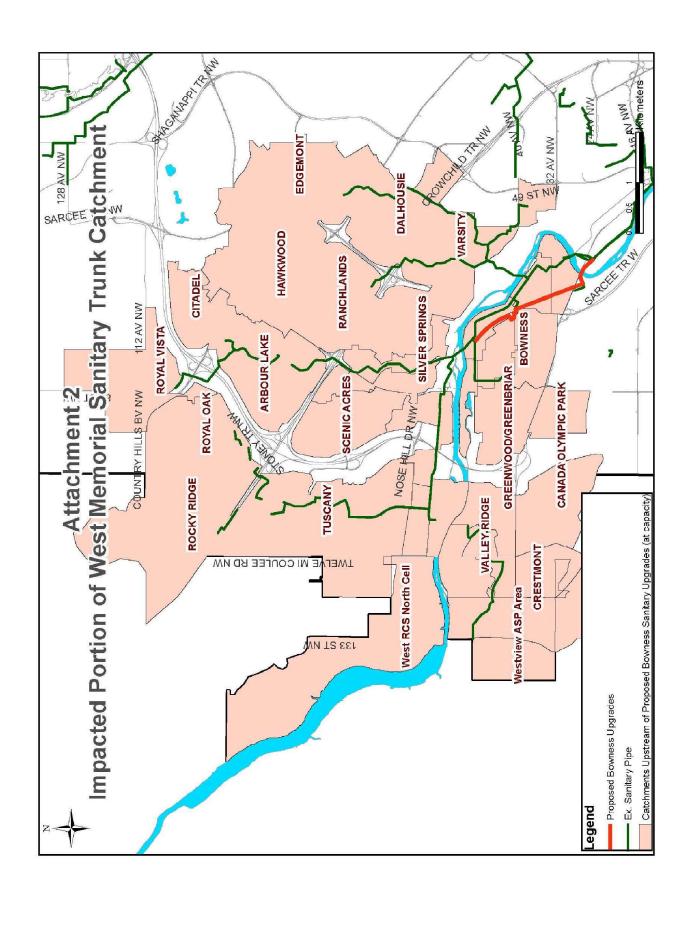
Additional details on recent changes to City of Calgary sanitary sewer designs including minimum flushing velocities can be found at:

http://www.calgary.ca/PDA/DBA/Documents/urban_development/publications/DGSS-Addendum-2011-03-31.pdf

2.0 Report Requirements

The Sanitary Servicing Study shall include, but may not be limited to, the following:

- Location map and description of the subject property;
- Description of the proposed development and development land use;
- Plan showing the proposed development, existing and proposed infrastructure, upstream catchment area and proposed service connection point and diameter;
- Calculations of design flow parameters detailed in section 1.2 and a comparison with existing flows
- Rationale behind the proposed servicing plan and additional significant issues relevant to the development (ie., high population densities, expected schedule and phasing of development)
- Provincial Permit to Practice Number
- Signature and stamp of a Professional Engineer


2.1 Submission Requirements

• Two copies of the Sanitary Servicing Study are required

Attachment 1

Attachment 2

Appendix B

Sanitary Sewer System Analysis Scenarios

2501 RICHMOND - OFFSITE SANITARY DESIGN TABLE Scenario 1: Existing System Analysis

Number N				l	ST	ıa:	24					ST	th	25			
Number Number Number Institutional Estimated Camulative Coffingle Offingle Offing		From			Ex 13	Ex 8	Ex 45		Ex 35	Ex 27	Ex 23	Ex 15	EX 14	EX 12	EX 10	EX7	EX 57
Polymbr Institutional Estimated Estimated Estimated Polymbr Institutional Ins		То			Ex 8	Ex 45	Ex 42		Ex 27	Ex 23	Ex 15	Ex 14	Ex 12	Ex 10	EX 7	EX 57	EX 41
Institutional Estimated Total Estimated Lestimated Lestima		Number Of Single	Housing	Units													
Partitutional Estimated Total Estimated Area Institutional Institutional Population Popula		Number Of MF	Housing	Units													
Total Estimated Estimated Estimated Estimated Estimated Estimated Estimated		_		(ha)**													
Estimated Estimated Estimated Commitative Commit	,	Estimated Institutional	Flow	(L/s)**	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Estimated Estimated Estimated Cumulative Cumulative Cumulative Cumulative Cumulative Cumulative Cumulative Pi		Total Institutional	Flow	(L/s)	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
Cumulative Cum		Estimated Population			54	58	52		27	21	0	17	37	22	19	24	7.4
Litresiday Li		Estimated Jobs			0	0	0		0	0	0	0	0	0	0	0	0
Average Day (DWF)		Estimated Cumulative	Population	& Jobs	54	112	164		27	48	48	65	102	124	143	167	241
Average Day (DWF) Slope Pipe Diameter Velocity Length of of of Pipe P. Growe Inc. Area Cum. Area Qwwr Qrwwr (%) Size Actual (ms) (m) (%) Size Actual (ms) (m) (%) Size Actual (ms)			Litres/day		20,520	42,560	62,320		10,260	18,240	18,240	24,700	38,760	47,120	54,340	63,460	91.580
			Litres/sec		0.20	0.41	0.60		0.12	0.21	0.21	0.29	0.45	0.55	0.63	0.73	1.06
		Ą	P,		4.31	4.23	4.18		4.36	4.32	4.32	4.29	4.24	4.22	4.20	4.18	4.12
NF) Slope Pipe Diameter Velocity Length Capacity 5.2Area Cum. Area Q _{mare} Q _{mare} Pipe Diameter Velocity Length Capacity 5.227 5.927 1.86 2.88 0.50 CIP 200 207.72 0.76 82.91 25.88 5.827 7.464 2.09 5.10 0.39 0.34 CIP 200 207.72 0.76 82.91 25.88 5.827 7.464 2.09 5.10 0.35 CIP 200 207.72 0.76 82.91 25.88 5.827 7.464 2.09 5.10 0.35 CIP 200 207.72 0.76 82.91 25.88 5.877 7.464 2.09 5.10 0.23 CIP 200 207.72 2.86 93.40 90.13 1.577 7.464 2.08 6.17 CIP 200 207.72 2.86 93.40 90.13 1		verage Day	Q _{PDWF}		1.02	2.08	3.01		0.52	0.91	0.91	1.23	1.90	2.30	2.64	3.07	
Slope Pipe Diameter Velocity Length Capacity		(DWF)	Inc. Area		5.927	0.866	0.671		0.578	0.458	0.000	0.306	0.680	0.397	0.337	0.432	1.346
Slope Pipe Diameter Velocity Length Capacity			Cum. Area		5.927	6.793	7.464		0.578	1.036	1.036	1.342	2.022	2.419	2.756	3.188	
Slope Pipe Diameter Velocity Length Capacity			Q _{WWF}		1.66	1.90	2.09	L	0.16	0.29	0.29	0.38	0.57	0.68	0.77	0.89	1.27
Pipe			Q _{PWW} F		2.68	3.99	5.10		0.68	1.20	1.20	1.60	2.47	2.98	3.41	3.96	5.63
Diameter Velocity Length Capacity Pipe (mt) Fouring Of Of Of Of Of Of Of O		Slope		(%)	0.50	0.34	0.53		6.17	2.45	4.86	5.07	1.85	0.65	0.49	0.93	0.99
ameter Velocity Length Capacity of Flowing of Pipe (mm) Line Pipe (mm) (lus) (m) (lus) 25.58 (m.) 25.68 (m.) 2		Pipe Material		L	유	CIP	CIP		유	윾	유	유	CIP	CIP	CIP	유	CP P
Velocity Flowing Ltaal Length of Of Of Of Of Of Of Of Of Of Of Of Of Of		Diam of	Pipe (Size	200	250	250		200	200	200	200	200	200	200	250	
Length Capacity of Of Line Pipe (m) (ls) 82.21 25.68 90.54 90.53 77.46 91.67 47.62 90.03 93.40 90.13 75.93 56.77 47.62 90.02 93.61 25.50 93.61 25.50 93.61 25.50 93.64 71.50 93.64 91.67		eter	mm)	Actual	207.72	251.46	268.064		207.72	207.72	207.72	207.72	207.72	207.72	207.72	268.064	268.064
Capacity of Pipe (IVs) 25.88 25.88 90.13 56.27 80.02 81.67 49.20 25.50 68.56 71.38		Velocity Flowing	Ξ	(m/s)	0.76	0.71	0.92		2.66	1.68	2.36	2.41	1.45	0.86	0.75	1.22	1.26
1		Length of	Line	(m)	82.91	90.54	82.30		93.40	75.93	47.62	15.04	65.02	39.61	33.41	46.73	125.98
1		Capacity of	Pipe	(l/s)	25.68	35.22	51.95		90 13	56.77	80.02	81.67	49.30	29.16	25 50	68.96	71 34
			Capacity	(%)	10%	11%	10%		1%	2%	2%	2%	5%	10%	13%	6%	8%

Flow rate of 0.46 L/s used for Institutional Land Uses

*** Calculations based on AENV STANDARDS AND GUIDELINES FOR MUNICIPAL WATERWORKS, WASTEWATER AND STORM DRAINAGE SYSTEMS, as outlined below.

Based on estimate of 55p/ha

5.1.1

5.1.1.1 Residential (Population-Generated)

If no existing data exists, the peak (population-generated) flow for a residential population may be determined by the following formula:

$$Q_{PDW} = \frac{G \times P \times Pf}{86.4}$$

where: G_{PDW} = the peak dry weather design flow rate (L/s)

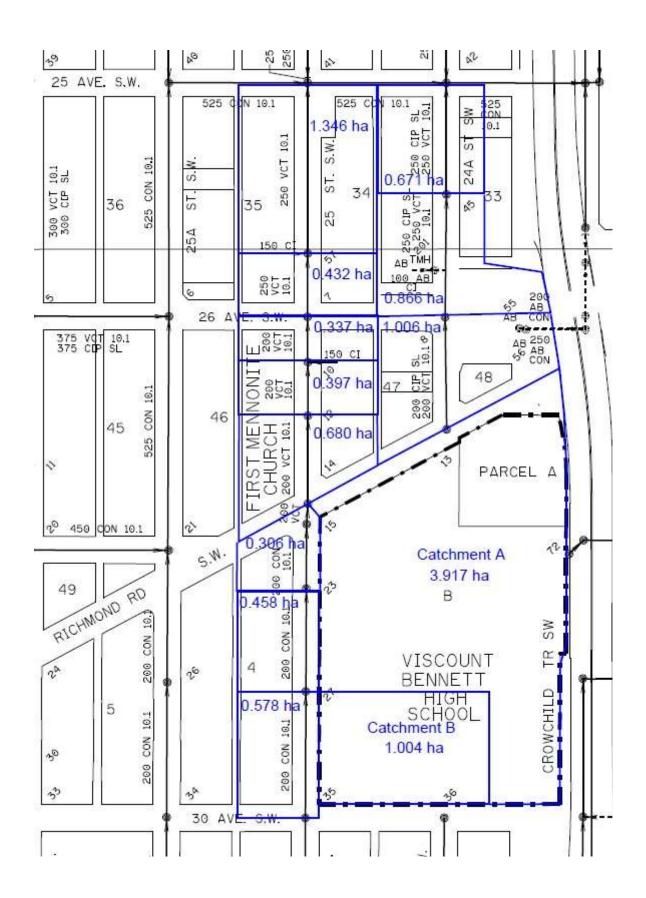
G = the per capita average daily design flow (L/d)

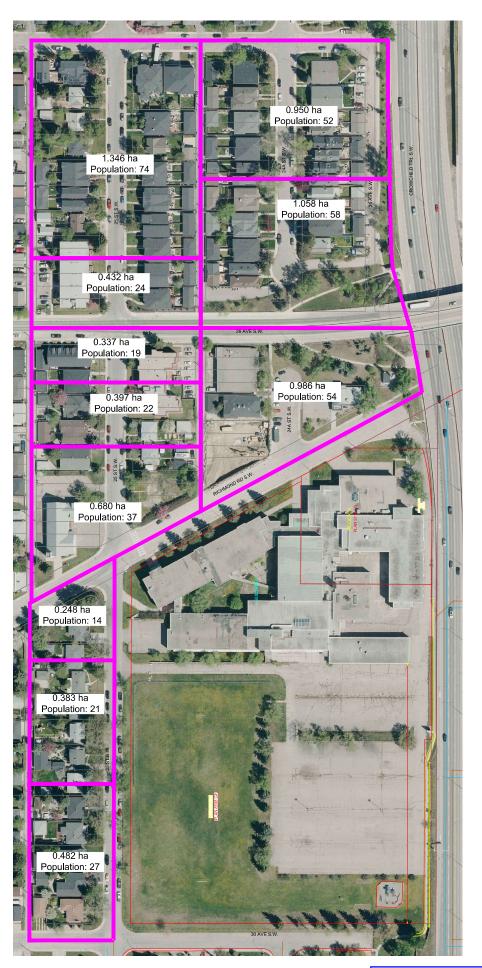
P = the design contributing population in thousands

Pf = a "peaking factor".

The peaking factor (Pf) should be the larger of 2.5 or Harmon's Peaking Factor

where:


Harmon's Peaking Factor = $1 + 14/(4 + P^{1/2})$


where

P = the design contributing population in thousands.

Infiltration Allowance	0.28	L/s/ha
People/single family unit	3.3	С
People/MF unit	1.7	С
People/Senior Living unit	1.2	С
Water Demand (new Develop.)	315	L/c/d
Water Demand (ex Develop.)	380	L/c/d

Town and or or or or or agent for instantational card Cocca

Existing Area
Population Estimates

2501 RICHMOND - OFFSITE SANITARY DESIGN TABLE Scenario 2: Max Unit Density W/O System Upgrades

			25	th	ST				2	44	۱ S	Т				
EX 57	EX 7	EX 10	EX 12	EX 14	Ex 15	Ex 23	Ex 27	Ex 35	Ex 45	Ex 8	Ex 13	Stub			From	
EX 41	EX 57	EX 7	Ex 10	Ex 12	Ex 14	Ex 15	Ex 23	Ex 27	Ex 42	Ex 45	Ex 8	Ex 13			То	
													Units	Housing	Of Single	Number
							820					870	Units	Housing	Of MF	Number
													(ha)**		Area	Institutional
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	(L/s)**	Flow	Institutional	Estimated
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(L/s)	Flow	Institutional	Total
74	24	19	22	37	17	0	1,415	27	52	58	54	1,479			Population	Estimated
0	0	0	0	0	0	0	0	0	0	0	0	0			Jobs	Estimated
1635	1561	1537	1518	1496	1459	1442	1442	27	1643	1591	1533	1479	& Jobs	Population	Cumulative	Estimated
529,325	501,205	492,085	484,865	476,505	462,445	455,985	455,985	10,260	528,205	508,445	486,405	465,885		Litres/day		
6.13	5.80	5.70	5.61	5.52	5.35	5.28	5.28	0.12	6.11	5.88	5,63	5.39		Litres/sec		
3.65	3.67	3.67	3.68	3.68	3.69	3.69	3.69	4.36	3.65	3.66	3.67	3.68		קַ		,
22.37	21.27	20.91	20.63	20.30	19.74	19.48	19.48	0.52	22.32	21.54	20.68	19.86		Q _{PDWF}	Hadingo buy (b.	verage D
1.346	0.432	0.337	0.397	0.680	0.306	0.000	1.462	0.578	0.671	0.866	1.006	3.917		Inc. Area	uj (0)	av (DWF)
5.538	4.192	3.760	3.423	3.026	2.346	2.040	2.040	0.578	6.460	5.789	4.923	3.917		Cum. Area		
1.55	1.17	1.05	0.96	0.85	0.66	0.57	0.57	0.16	1.81	1.62	1.38	1.10		Q _{wwF}		
23.93	22.45	21.97	21.59	21.15	20.40	20.06	20.06	0.68	24.13	23.16	22.05	20.96		Q _{PWW} =		
0.99	0.93	0.49	0.65	1.85	5.07	4.86	2.45	6.17	0.53	0.34	0.50	08.0	(%)			Slope
CIP	유	CIP	CIP	CIP	CIP	PVC			Material	Pipe						
250	250	200	200	200	200	200	200	200	250	250	200	200	Size	Pipe	_	Diar
268.064	268.064	207.72	207.72	207.72	207.72	207.72	207.72	207.72	268.064	268.064	207.72	201.16	Actual	Pipe (mm)	읔	Diameter
1.26	1.22	0.75	0.86	1.45	2.41	2.36	1.68	2.66	0.92	0.74	0.76	0.94	(m/s)	Ξ	Flowing	Velocity
125.98	46.73	33.41	39.61	65.02	15.04	47.62	75.93	93.40	82.30	90.54	82.91	20.00	(m)	Line	약	Length
71.34	68.96	25.50	29.16	49.30	81.67	80.02	56.77	90.13	51.95	41 77	25.68	29.79	(l/s)	Pipe	of	Capacity
34%	33%	86%	74%	43%	25%	25%	35%	1%	46%	55%	86%	70%	(%)	Capacity	of Full	Percent

Based on estimate of 55p/ha

Includes existing population from Scenario 1 plus max additional units from project

5.1.1.1 Residential (Population-Generated)

If no existing data exists, the peak (population-generated) flow for a residential population may be determined by the following formula:

$$Q_{PDW} = \frac{G \times P \times Pf}{86.4}$$

where: Q_{PDW} =

the peak dry weather design flow rate (L/s)

G = the per capita average daily design flow (L/d)

P = the design contributing population in thousands

Pf = a "peaking factor".

The peaking factor (Pf) should be the larger of 2.5 or Harmon's Peaking Factor

where:

Harmon's Peaking Factor $= 1 + 14/(4 + P^{1/2})$

T = the design contributing population in thousands.

Water Demand (ex Develop.)	Water Demand (new Develop.)	People/Senior Living unit	People/MF unit	People/single family unit	Infiltration Allowance
380	315	1.2	1.7	3.3	0.28
L/c/d	L/c/d	С	С	С	L/s/ha

^{**} Flow rate of 0.46 L/s used for Institutional Land Uses
*** Calculations based on AENV STANDARDS AND GUIDELINES FOR MUNICIPAL WATERWORKS, WASTEWATER AND STORM DRAINAGE SYSTEMS, as outlined below.

2501 RICHMOND - OFFSITE SANITARY DESIGN TABLE Scenario 3: Max Unit Density Analysis

			25	th	ST				2	4Α	S	Т				
EX 57	EX 7	EX 10	EX 12	EX 14	Ex 15	Ex 23	Ex 27	Ex 35	Ex 45	Ex8	Ex 13	Stub			From	
EX 41	EX 57	EX 7	Ex 10	Ex 12	Ex 14	Ex 15	Ex 23	Ex 27	Ex 42	Ex 45	Ex 8	Ex 13			То	
													Units	Housing	Of Single	Number
							535					990	Units	Housing	Of MF	Number
													(ha)**		Area	Institutional
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	(L/s)**	Flow	nstitutiona	Estimated
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(L/s)	Flow	nstitutional	Total
74	24	19	22	37	17	0	931	27	52	58	54	1,683			Population	Estimated
0	0	0	0	0	0	0	0	0	0	0	0	0			Jobs	Estimated
1151	1077	1053	1034	1012	975	958	958	27	1847	1795	1737	1683	& Jobs	Population	Cumulative	Estimated
376,708	348,588	339,468	332,248	323,888	309,828	303,368	303,368	10,260	592,465	572,705	550,665	530,145		Litres/day		
4.36	4.03	3.93	3.85	3.75	3,59	3.51	3.51	0.12	6.86	6,63	6.37	6.14		Litres/sec		
3.76	3.78	3.79	3.79	3.80	3.81	3.81	3.81	4.36	3.61	3.62	3,63	3.64		ַס	,	Þ
16.39	15.25	14.87	14.58	14.23	13.65	13.38	13.38	0.52	24.77	24.01	23.15	22.35		Q _{PDWF}	Preciago paj (p.	erane Da
1.346	0.432	0.337	0.397	0.680	0.306	0.000	1.462	0.578	0.671	0.866	1.006	3.917		Inc. Area	J (0000)	(DWE)
5.538	4.192	3.760	3.423	3.026	2.346	2.040	2.040	0.578	6.460	5.789	4.923	3.917		Cum. Area		
1.55	1.17	1.05	0.96	0.85	0.66	0.57	0.57	0.16	1.81	1.62	1.38	1.10		QwwF		
17.94	16.42	15.93	15.54	15.08	14.31	13.96	13.96	0.68	26.58	25.63	24.53	23.45		Q _{PWW} F		
0.99	0.93	0.49	0.65	1.85	5.07	4.86	2.45	6.17	0.53	0.34	0.50	0.80	(%)			Slope
CIP	CIP	CIP	CIP	CIP	PVC			Materia	Pipe							
250	250	200	200	200	200	200	200	200	250	250	200	200	Size	Pipe	_	Diar
268.064	268.064	207.72	207.72	207.72	207.72	207.72	207.72	207.72	268.064	268.064	207.72	201.16	Actual	ipe (mm)	of	Diameter
1.26	1.22	0.75	0.86	1.45	2.41	2.36	1.68	2.66	0.92	0.74	0.76	0.94	(m/s)	F	Flowing	Velocity
125.98	46.73	33.41	39.61	65.02	15.04	47.62	75.93	93.40	82.30	90.54	82.91	20.00	(m)	Line	of	Length
71.34	68.96	25.50	29.16	49.30	81.67	80.02	56.77	90.13	51.95	41.77	25.68	29.79	(l/s)	Pipe	약	Capacity
25%	24%	62%	53%	31%	18%	17%	25%	1%	51%	61%	96%	79%	(%)	Capacity	of Full	Percent

Based on estimate of 55p/ha

Pipe capacity exceeds 86% and requires upsize

Includes existing population from Scenario 1 plus max additional units from project site

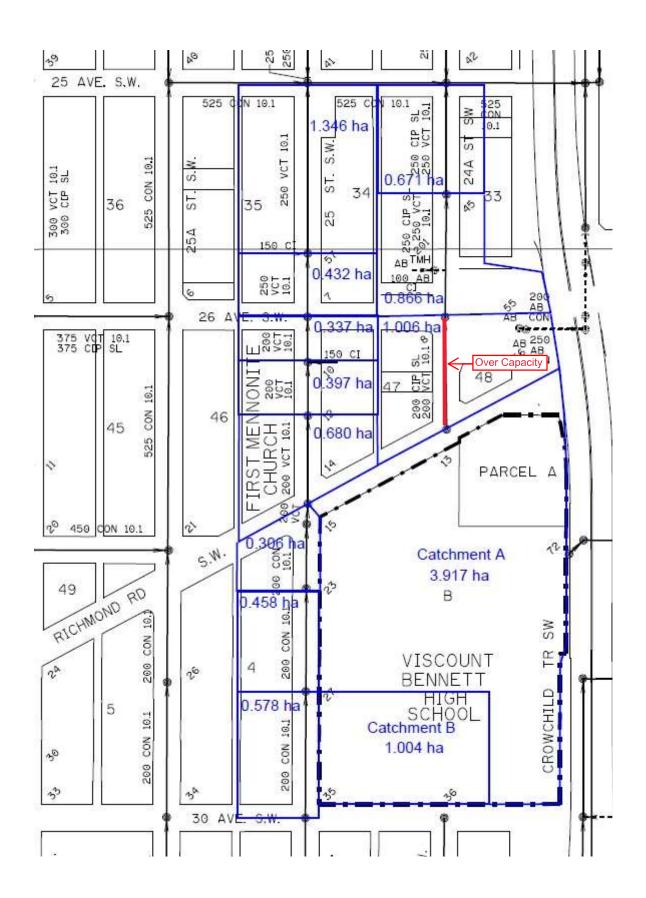
5.1.1.1 Residential (Population-Generated)

If no existing data exists, the peak (population-generated) flow for a residential population may be determined by the following formula:

$$Q_{PDW} = \frac{G \times P \times Pf}{86.4}$$

where: Q_{PDW} =

the peak dry weather design flow rate (L/s)
G = the per capita everage daily design flow (L/d)
the design contributing population in thousands
Pf = a "peaking factor".


where: The peaking factor (Pf) should be the larger of 2.5 or Harmon's Peaking Factor

Harmon's Peaking Factor $= 1 + 14/(4 + P^{1/2})$

T = the design contributing population in thousands.

Infiltration Allowance People/single family unit	0.28	L/s/ha c
People/MF unit	1.7	С
People/Senior Living unit	1.2	С
Water Demand (new Develop.)	315	Ľ/c/d
Water Demand (ex Develop.)	380	L/c/d

WASTEWATER AND STORM DRAINAGE SYSTEMS, as outlined below. ** Flow rate of 0.46 L/s used for Institutional Land Uses
*** Galculations based on AENV STANDARDS AND GUIDELINES FOR MUNICIPAL WATERWORKS,

2501 RICHMOND - OFFSITE SANITARY DESIGN TABLE Scenario 4: Max Unit Density Pipe Segment Upgrades

			L	T	S	24A	2				ST	th	25			
Number Number Number Number Number Number Stimated	From			Stub	Ex 13	Ex 8	Ex 45	Ex 35	Ex 27	Ex 23	Ex 15	EX 14	EX 12	EX 10	EX 7	FX 57
Stimated Estimated Cumulative Cumula	2 I			Ex 13	Ex 8	Ex 45	Ex 42	Ex 27	Ex 23	Ex 15	Ex 14	Ex 12	Ex 10	EX 7	EX 57	FX 41
Stimated Estimated Cumulative Cumula	Number Of Single	Housing	Units													
Stimated Estimated Cumulative Cumula	Number Of MF	Housing	Units	990					535							
Stimated Estimated Cumulative Cumula	Institutional Area															
Stimated Estimated Cumulative Cumula	Estimated Institutiona	Flow	(L/s)**	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000
Stimated Estimated Cumulative Cumula	Total	Flow	(L/s)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
Statimated Estimated Cumulative Cumu	Estimated Population			1,683	54	58	52	27	931	0	14	37	22	19	24	7.4
Cumulative Cum	-			0	0	0	0	0	0	0	0	0	0	0	0	0
Litres/day Litres/sec P ₁ Q _{10vvv} V _{10vvv} Q _{10vvv} V _{10vvv} Q _{10vvvv} Q _{10vvvv} Q _{10vvvv} Q _{10vvvv} Q _{10vvvvv} Q _{10vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv}		Populatio	& Jobs	1683	1737	1795	1847	27	958	958	972	1009	1031	1050	1074	1148
Charles Store Proper P		П		530,145	550,665	572,705	592,465	10,260	303,368	303,368	308,688	322,748	331,108	338,328	347,448	375 568
Pr. Chown Inc. Area Cum. Area Area Cum. Area Area Cum. Area Ar				6.14	6.37	6.63	6.86	0.12	3.51	3.51	3.57	3.74	3.83	3.92	4.02	4.35
Average Day (DWF) Cum. Avea Qum. Qum. Avea Qum. Qum. Qum. Qum. Qum. Qum. Qum. Qum.				3.64	3.63	3.62	3.61	4.36	3.81	3.81	3.81	3.80	3.79	3.79	3.78	3 76
Pipe	Averag			22.35	23.15	24.01	24.77	0.52	13.38	13.38	13.61	14 19	14.53	14.83	15.20	16.35
C.Area Cum. Area Com. Area Cum. Ar	e Day (DW	VPDWF		0.70	0.47	0.43	0.44	0.02	0.39	0.39	0.40	0.42	0.43	0.44	0.27	0 29
Owner Openation Pipe Diameter Velocity Length Capacity 0.wmr Openation (%) Material pripe (mm) Full Line Pipe (ms) Full Line Pipe (ms) Pipe	F)	-		3.917	1.006	0.866	0.671	0.578	1.462	0.000	0.306	0.680	0.397	0.337	0.432	1346
Slope Pipe Diameter Velocity Length Capacity Capacit				3.917	4.923	5.789	6.460	0.578	2.040	2.040	2.346		3.423	3.760	4.192	5.538
Slope Pipe Material Diameter of Pipe (mm) Velocity Flowing Flowing Length Line Pipe (mb) Capacity of of of of of of of of of of of of of		-		⊢	Н	┝	Н	0.16	0.57	0.57	0.66	0.85	0.96	1.05	1.17	
Pipe Diameter Velocity Length Capacity Material Pipe (mm) Full Line Pipe (ms) Capacity		Q _{PWWF}		23.45	24.53	25.63	26.58	0.68	13.96	13.96	14.26	15.03	15.49	15.88	16.37	17 90
Diameter Velocity Length Capacity of of of of Size Actual (m/s) (m/s) (m/s) 200 251.46 0.94 20.00 29.79 280 251.46 0.86 82.91 42.75 250 288.044 0.74 90.54 41.77 250 288.044 0.92 88.30 51.95 250 288.044 0.92 88.30 90.13 250 288.044 0.92 88.30 90.13 200 207.72 2.86 93.40 90.13 200 207.72 1.68 75.93 56.71 200 207.72 2.41 15.04 81.67 200 207.72 1.45 68.02 49.30 200 207.72 0.86 93.61 29.46 200 207.72 0.86 39.61 29.96 200 207.72 0.86 39.61	Slope		(%)	0.80	0.50	0.34	0.53	6.17	2.45	4.86	5.07	1.85	0.65	0.49	0.93	0 99
Inneter Velocity Length Capacity of e(mm) Flowing of of of of of of ell end of of of of of of of ell Eull Eull Line Pipe Actual (ms) (ms) 29.79 251.46 0.86 82.91 42.75 288.064 0.74 90.54 41.77 288.064 0.92 82.30 91.13 207.72 2.86 93.40 90.13 207.72 2.86 75.93 80.02 207.72 2.41 15.04 81.67 207.72 2.41 15.04 81.67 207.72 2.43 45.73 8.43 207.72 2.41 15.04 81.67 207.72 0.86 33.61 29.16 207.72 0.75 33.41 25.50 280.04 1.22 46.73 8.96 280.04 1.25 45.75 8.96 280.044 1.26 67.50 8.	Pipe Material			H	PVC	유	CIP	CIP	L	-	H	CIP	유	H	유	2
Velocity Length Capacity Flowing of of of Full Line Pipe Pipe Line Pipe Line Pipe Line Pipe Line Line Pipe Line Line Pipe Line Line Line Pipe Line	Diame of	Pipe (n	Н	H	Н	⊢	Н	┝	H	H	H	H	H	H	⊢	
Length Capacity of Line Pipe (m) (l/s) 20.00 29.75 82.91 42.75 90.54 41.77 82.30 51.95 90.73 75.80 80.96 125.50 93.41 25.50 93.41 25.50 93.41 25.50 93.41 25.50 93.41 25.50 93.41 25.50 93.41 25.50 93.41 25.50 93.41 25.50	ter	<u>i</u>	Actual	201.16	251 46	68.064	68.064	207.72	207.72	207.72	207.72	207.72	207.72	207.72	68.064	68 064
Capacity of Pape (I/Is) 29,79 42,75 41,77 51,95 90,113 56,77 80,02 29,16 68,96 71,96 68,96 71,96 68,96 71,96 71,97 68,97 68,97	Velocity Flowing	Ē	(m/s)	0.94	0.86	0.74	0.92	2.66	1.68	2.36	2.41	1.45	0.86	0.75	1.22	126
	_	Line	(m)	20.00	82.91	90.54	82.30	93.40	75.93	47.62	15.04	65.02	39.61	33.41	46.73	125.98
Percent of Full Capacity (%) 79% 57% 61% 51% 51% 51% 51% 52% 28% 30% 62% 52%	Capacity of	Pipe	(l/s)	29.79	42.75	41.77	51.95	90.13	56.77	80.02	81.67	49.30	29.16	25.50	68.96	71 34
	Percent of Full	Capacity	(%)	79%	57%	61%	51%	1%	25%	17%	17%	30%	53%	62%	24%	25%

Upsized pipe section
Includes existing population from Scenario 1 plus max additional units from project site

5.1.1.1 Residential (Population-Generated)

If no existing data exists, the peak (population-generated) flow for a residential population may be determined by the following formula:

$$Q_{PDW} = \frac{G \times P \times Pf}{86.4}$$

where:

Q_{PDW} =

the peak dry weather design flow rate (L/s)

G = the per capita average daily design flow (L/d)

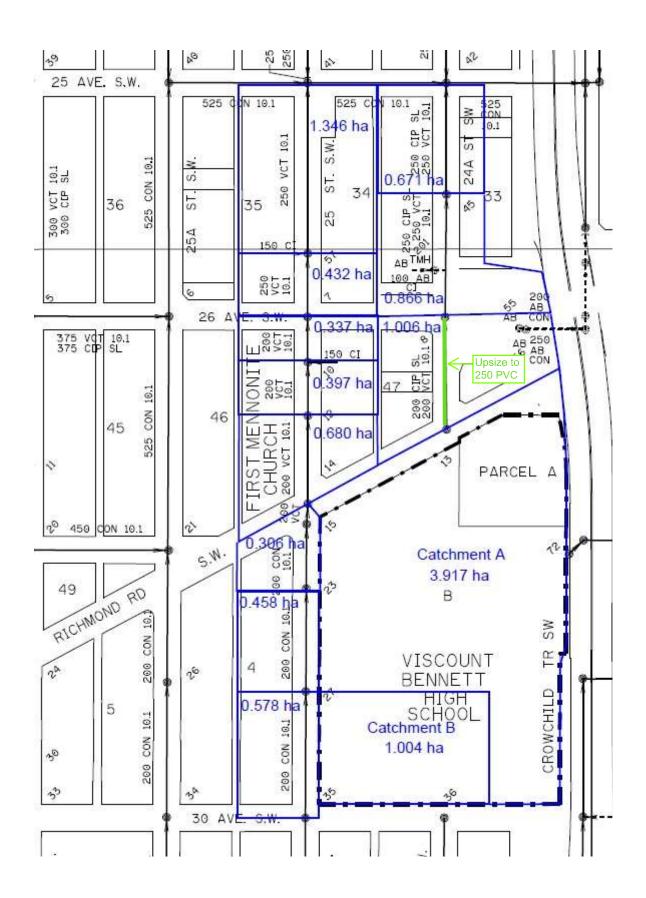
P = the design contributing population in thousands

Pf = a "peaking factor".

The peaking factor (Pf) should be the larger of 2.5 or Harmon's Peaking Factor

Harmon's Peaking Factor

 $= 1 + 14/(4 + P^{1/2})$


where:

U the design contributing population in thousands.

Water Demand (ex Develop.)	Water Demand (new Develop.)	People/Senior Living unit	People/MF unit	People/single family unit	Infiltration Allowance
380	315	1.2	1.7	3.3	0.28
L/c/d	L/c/d	С	С	С	L/s/ha

[&]quot;* Flow rate of 0.46 L/s used for Institutional Land Uses
"* "Calculations based on AERV STANDADS AND GUIDELINES FOR MUNICIPAL WATERWORKS,
WASTEWATER AND STORM DRAMAGE SYSTEMS, as outlined below.

Based on estimate of 55p/hs

